NON-CONJUGACY OF A MINIMAL DISTAL DIFFEOMORPHISM OF THE TORUS TO A C¹ SKEW-PRODUCT

BY M. REES

ABSTRACT

An example is given of a positively oriented minimal distal C^* diffeomorphism of the torus which is not topologically conjugate to a C^1 skew-product.

Introduction

Let $\operatorname{Hom}^+(K^n)$ denote the set of orientation-preserving homeomorphisms of the *n*-dimensional torus $K^n = \mathbb{R}^n/\mathbb{Z}^n$. If T is a minimal element of $\operatorname{Hom}^+(K)$, then it is known that T is topologically conjugate to an irrational rotation of K, which is, of course, C^{∞} . Correspondingly, if T is a minimal distal element of $\operatorname{Hom}^+(K^2)$, it is known (see, for instance, [4]) that T is topologically conjugate to a homeomorphism of K^2 of the form:

$$T_{\alpha,g}:(x,y)\mapsto(x+\alpha,y+g(x))$$
 where $g\in C(K,K)$ and α is irrational.

In this paper, it is shown that, contrary to what happens for the circle, or for almost periodic homeomorphisms in general, there is a minimal distal C^{∞} element of $\mathrm{Hom}^+(K^2)$ which is not topologically conjugate to any C^1 homeomorphism of the form $T_{\alpha,g}$.

I should like to thank my supervisor, W. Parry, for suggesting the problem and for helpful discussion. I should like to thank the S.R.C. for financial support.

§1. Preliminaries

1.1. If $f \in C(K^n, K^n)$, then there exists a unique element of $C(\mathbb{R}^n, \mathbb{R}^n)$, again denoted by f, such that $f(0) \in [0, 1)^n$, and the following diagram commutes:

Received November 28, 1977

For $\operatorname{Hom}^+(K)$, this correspondence reduces to a correspondence between $\operatorname{Hom}^+(K)$ and $\{f \in C(\mathbf{R}, \mathbf{R}) : f \text{ is a homeomorphism, } f(x+1) = f(x) + 1 \text{ for all } x \in \mathbf{R}, \text{ and } f(0) \in [0, 1)\}.$

Note that in what follows, for all equations (inequalities) involving elements of $C(\mathbf{R}^n, \mathbf{R}^n)$ corresponding to elements of $C(K^n, K^n)$, the equality (inequality) sign denotes real equality (inequality) and not equality (inequality) mod \mathbf{Z}^n .

1.2. Let $\operatorname{Hom}^+(K)$ be given the topology of uniform convergence. The rotation number function $\rho: \operatorname{Hom}^+(K) \to K$ is continuous.

If $q \in \mathbb{Z}$ and $f \in \operatorname{Hom}^+(K)$, then $\rho(f) = \mathbb{Z} + (p/q)$ for some $p \in \mathbb{Z}$ if and only if there exists $x \in K$ with $f^q(x) = x$. (See, for example, [3], [1] for definition and basic properties of ρ .)

1.3. DEFINITION. Let $f \in \text{Hom}^+(K)$ with $\rho(f) = \mathbb{Z} + (p/q)$ with p, q coprime and positive, $0 \le p < q$. We follow [1] in defining f to be semistable forward if:

$$f^q(x) \ge x + p$$
 for all $x \in \mathbf{R}$.

1.4. DENJOY'S THEOREM. (See, for example, [3].) Let $f \in \text{Hom}^+(K)$ be C^2 and $\rho(f) = \mathbf{Z} + \alpha$, $\alpha \in [0, 1)$ and irrational. Then there exists a unique $\varphi \in \text{Hom}^+(K)$ such that:

$$\varphi(f(x)) = \varphi(x) + \alpha$$
 for all $x \in \mathbb{R}$, $\varphi(0) = 0$.

 φ is called the eigenfunction of f corresponding to α . Note that, in particular, f is minimal almost periodic.

§2. Reduction of the problem

Throughout this section, let $f \in \operatorname{Hom}^+(K)$ be C^{∞} with $\rho(f) = \mathbf{Z} + \alpha$, α irrational, $\alpha \in [0, 1)$.

Let $T \in \text{Hom}^+(K^2)$ be given by:

$$T(x, y) = (f(x), x + y).$$

Then (K^2, T) is distal, and the maximal almost periodic factor is (K, f). Since (K, f) is minimal by 1.4, (K^2, T) is minimal by [2] §2.

Consider the following four statements. It will be shown that $2.4 \Rightarrow 2.3 \Rightarrow 2.2 \Rightarrow 2.1$.

2.1. If T(x, y) = (f(x), x + y), then T is not conjugate to any C^1 homeomorphism of the form:

$$T_{\beta,g}:(x,y)\mapsto (x+\beta,y+g(x)),$$
 where $\beta\in\mathbf{R}$ and $g\in C^1(K,K)$.

2.2. The equation:

$$x - \varphi(x) = \psi(\varphi(x)) + \chi(f(x)) - \chi(x) + \mu$$

does not hold for any $\psi \in C^1(\mathbf{R}, \mathbf{R})$, $\chi \in C(\mathbf{R}, \mathbf{R})$, $\mu \in \mathbf{R}$, where ψ and χ have period 1, $\int_0^1 \psi = 0$, and φ is the eigenfunction of f corresponding to α (see 1.4).

2.3. For each $\psi \in C^1(\mathbf{R}, \mathbf{R})$ with period 1 and $\int_0^1 \psi = 0$, there exists a strictly increasing sequence $\{m_n\}$ of positive integers with:

(i)
$$\sup_{n}\sup_{x\in\mathbb{R}}\left|\sum_{i=0}^{m_n-1}\psi(x+i\alpha)\right|<\infty.$$

(ii) The sequence

$$\left\{ \sup_{x \in \mathbb{R}} \left| \sum_{i=0}^{m_n-1} (f^i(x) - i\alpha) - (m_n/m_{n+1}) \sum_{i=0}^{m_{n+1}-1} (f^i(x) - i\alpha) \right| \right\}$$

is unbounded.

2.4. There exists a constant B > 0, a sequence $\{q_n\}$ of postiive integers with $q_{n+1} > q_n^6$ and a sequence $\{x_n\}$ of elements of **R** such that, if for each n, m_n is any multiple of q_n with $q_n \le m_n \le q_n^2$, then:

(i)
$$\left| \frac{1 - e^{2\pi i r m_n \alpha}}{1 - e^{2\pi i r \alpha}} \right| \le 1 \text{ for } r \le q_n^6, r \text{ not a multiple of } q_n.$$

(ii)
$$\left\{ (1/m_{n+1}) \sum_{i=0}^{m_{n+1}-1} \left(f^i(x_n) - i\alpha \right) \right\} - \left\{ (1/m_n) \sum_{i=0}^{m_n-1} \left(f^i(x_n) - i\alpha \right) \right\} \geqq B/q_n.$$

 $2.2 \Rightarrow 2.1$. If T is conjugate to a C^1 homeomorphism of the form $T_{\beta,g}$, we can assume $\beta = \alpha$, and that the conjugacy is given by:

$$(x, y) \mapsto (\varphi(x), h(x) + y)$$
 where $h \in C(K, K)$ and φ is the eigenfunction of f corresponding to α .

This is essentially because the group of eigenvalues is preserved under conjugacy, and a conjugacy must give 1-1 correspondences between the groups

of eigenfunctions, and between the groups of generalized eigenfunctions of order 2. The result follows.

 $2.3 \Rightarrow 2.2$. Suppose 2.2 does not hold, i.e. the equation of 2.2 is satisfied by some ψ , χ , μ . Replacing x by f'(x) in the equation, we obtain:

$$f'(x) - i\alpha - \varphi(x) - \mu = \psi(\varphi(x) + i\alpha) + \chi(f^{i+1}(x)) - \chi(f^{i}(x)).$$

Summing over i from 0 to $m_n - 1$, we obtain:

$$\sum_{i=0}^{m_n-1} (f^i(x) - i\alpha) - m_n \varphi(x) - m_n \mu = \sum_{i=0}^{m_n-1} \psi(\varphi(x) + i\alpha) + \chi(f^{m_n}(x)) - \chi(x).$$

Then (i) and (ii) of 2.3 cannot hold simultaneously for any sequence $\{m_n\}$.

 $2.4 \Rightarrow 2.3$. Suppose 2.4 holds.

Let $\psi \in C^1(\mathbf{R}, \mathbf{R})$ have period 1, and $\int_0^1 \psi = 0$. It suffices to find a sequence $\{m_n\}$ with $q_n \le m_n \le q_n^2$, m_n a multiple of q_n , such that $\{m_n/q_n\}$ is unbounded, and:

$$\sup_{n}\sup_{x\in\mathbb{R}}\left|\sum_{i=0}^{m_{n}-1}\psi(x+i\alpha)\right|<\infty.$$

Suppose $\psi(x) = \sum_{r=-\infty}^{\infty} a_r e^{2\pi i r x}$. Then $\sum |a_r|^2 r^2 < \infty$ and $a_0 = 0$. For all $x \in \mathbb{R}$, $\sum_{i=0}^{m_n-1} \psi(x+i\alpha) = \sum_{r=-\infty}^{\infty} a_r (\sum_{s=0}^{m_n-1} e^{2\pi i r s \alpha}) e^{2\pi i r s}$. For each r, $|\sum_{s=0}^{m_n-1} e^{2\pi i r s \alpha}| \le m_n$. So

$$\sum_{r=-\infty}^{\infty} |a_{r}| \left| \sum_{s=0}^{m_{n}-1} e^{2\pi i r s \alpha} \right| \leq \sum_{|r| \leq m_{n}^{2}} |a_{r}| \left| \frac{e^{2\pi i r m_{n} \alpha} - 1}{e^{2\pi i r \alpha} - 1} \right| + \sum_{|r| > m_{n}^{3}} r^{1/3} |a_{r}| + m_{n} \sum_{t=-q_{n}^{5}}^{q_{n}^{5}} |a_{tq_{n}}|,$$

where Σ' denotes that the r th term is omitted if r is a multiple of q_n . Then, by 2.4(i):

$$\left| \sum_{i=0}^{m_n-1} \psi(x+i\alpha) \right| \leq \sum_{-\infty}^{\infty} r^{1/3} |a_r| + m_n \sum_{|t| \geq 1} |a_{iq_n}|;$$

$$\sum_{r=-\infty}^{\infty} r^{1/3} |a_r| \leq \left\{ \sum_{r=-\infty}^{\infty} r^{-4/3} \right\}^{1/2} \times \left\{ \sum_{r=-\infty}^{\infty} |a_r|^2 r^2 \right\}^{1/2} < \infty.$$

Thus it suffices to find a sequence $\{m_n\}$ such that:

(2.5) $\{m_n/q_n\}$ is unbounded, $q_n \le m_n \le q_n^2$, m_n is a multiple of q_n and:

$$\sup_{n} m_{n} \sum_{|t| \geq 1} |a_{tq_{n}}| < \infty.$$

Now

$$\sum_{|t| \ge 1} |a_{tq_n}| \le \left\{ \sum_{|t| \ge q_n} r^2 |a_r|^2 \right\}^{1/2} \times \left\{ \sum_{|t| \ge 1} \left(1/(t^2 q_n^2) \right) \right\}^{1/2}.$$

Write $C = \{\sum_{|t| \ge 1} (1/t^2)\}^{1/2}$ and $\gamma(q_n) = \{\sum_{|t| \ge q_n} r^2 |a_t|^2\}^{1/2}$. Then $\gamma(q_n) \to 0$ as $n \to \infty$ and $\sum_{|t| \ge 1} |a_{tq_n}| \le C\gamma(q_n)/q_n$.

Now take m_n to be the greatest multiple of q_n which is not greater than $Min(q_n/\gamma(q_n), q_n^2)$, or take $m_n = q_n$ if q_n is too small for such a multiple to exist. Then the sequence $\{m_n\}$ satisfies (2.5), as required.

§3. Solution of the reduced problem

We are now reduced to constructing a C^{∞} $f \in \text{Hom}^+(K)$ with $\rho(f) = \alpha$, α irrational, such that f, α satisfy the conditions of 2.4. The construction is similar to Arnold's construction [1] of a C^{∞} $f \in \text{Hom}^+(K)$ with irrational rotation number and eigenfunction which is not absolutely continuous.

The construction of f. Sequences $\{f_n\}$, $\{p_n\}$, $\{q_n\}$, $\{x_n\}$ $(n \ge 1)$ will be constructed such that:

3.1. Each f_n is defined and analytic in $\{z : | \operatorname{im} z | < 1\}$, $f_n(\mathbf{R}) \subseteq \mathbf{R}$, $f_n(z+1) = f_n(z) + 1$ for all z, $f_n(0) \in [0, 1)$, $f'_n(x) > 1/2$ for all $x \in \mathbf{R}$, (so that $f_n \mid \mathbf{R} \in \operatorname{Hom}^+(K)$), $f_{n+1} \mid \mathbf{R} \ge f_n \mid \mathbf{R}$ and:

$$\sup_{|\text{Im } z| < 1} |f_n(z) - f_{n+1}(z)| < 1/2^n.$$

- 3.2. p_n and q_n are coprime, $0 < p_n < q_n$, $\rho(f_n) = \mathbb{Z} + (p_n/q_n)$, $q_{n+1} > q_n^6$ and $p_{n+1}/q_{n+1} p_n/q_n = 1/q_nq_{n+1}$.
- 3.3. f_n is semistable forward and has exactly one cycle, i.e. exactly one finite minimal f_n -invariant set (see 1.2).
- 3.4-3.6 hold for any sequence $\{m_n\}$ of positive integers such that m_n is a multiple of q_n with $q_n \le m_n \le q_n^2$:

$$3.4. \qquad \left| \left| \frac{1 - e^{\frac{2\pi i r m_s p_n/q_n}{q_n}}}{1 - e^{\frac{2\pi i r p_n/q_n}{q_n}}} \right| - \left| \frac{1 - e^{\frac{2\pi i r m_s p_{n+1}/q_{n+1}}{q_{n+1}}}}{1 - e^{\frac{2\pi i r p_{n+1}/q_{n+1}}{q_{n+1}}}} \right| \right| < 1/2^n,$$

for $r \leq q_s^6$, r not a multiple of q_s , $s \leq n$.

3.5.
$$\sup_{x \in \mathbf{R}} \left| (1/m_r) \sum_{i=0}^{m_r-1} (f_n^i(x) - ip_n/q_n) - (1/m_r) \sum_{i=0}^{m_r-1} (f_{n+1}^i(x) - ip_{n+1}/q_{n+1}) \right| < (1/2^{n+4})q_r \quad \text{for } r \leq n.$$

3.6. $\{x_n\}$ is a sequence in **R** and:

$$(1/m_{n+1})\sum_{i=0}^{m_{n+1}-1} (f_{n+1}^{i}(x_n)-ip_{n+1}/q_{n+1}) > (1/m_n)\sum_{i=0}^{m_n-1} (f_{n}^{i}(x_n)-ip_{n}/q_n)+(1/4q_n).$$

Then let $f = \lim_{n \to \infty} f_n$, $\alpha = \lim_{n \to \infty} p_n/q_n$.

3.2 implies $|p_n/q_n - p_{n+1}/q_{n+1}| < 1/n^2 q_n^2$ for sufficiently large n, hence α is irrational ([1] §1).

Taking limits in 3.4–3.6 implies f, α satisfy 2.4, with B=1/8 in 2.4(ii). For 3.5 implies that:

$$\left| (1/m_r) \sum_{i=0}^{m_r-1} (f_r^i(x) - ip_r/q_r) - (1/m_r) \sum_{i=0}^{m_r-1} (f^i(x) - i\alpha) \right| < 1/16q_r.$$

Now use this in 3.6 with r = n and r = n + 1, to get 2.4(ii) with B = 1/8.

Let p_1 , q_1 be arbitrary coprime integers, $0 < p_1 < q_1$, and take any f_1 satisfying 3.1 and 3.3 with $\rho(f_1) = p_1/q_1 + \mathbb{Z}$. (Use [1] §1 lemma α to get a unique cycle for f_1 .)

Suppose f_n , p_n , q_n have been chosen and define x_n , f_{n+1} , p_{n+1} , q_{n+1} as follows:

Choice of x_n . There are precisely q_n points in any half-open interval of **R** of length one, which correspond to the points of the unique cycle of $f_n \mid \mathbf{R} \in \mathrm{Hom}^+(K)$. Let $y, z \in \mathbf{R}$ correspond to points in the cycle with y < z, and such that if y < w < z, then w does not correspond to a point in the cycle. Then for each i, $f_n^i(y)$ and $f_n^i(z)$ have the same property.

Choose x_n with $y < x_n < z$ and such that:

$$0 < f_n^i(x_n) - f_n^i(y) < (1/8)(f_n^i(z) - f_n^i(y)), \qquad 0 \le i \le q_n^2 - 1.$$

Then if m_n is any multiple of q_n with $q_n \le m_n \le q_n^2$:

$$(3.7) \quad (1/m_n) \sum_{i=0}^{m_n-1} (f_n^i(z) - f_n^i(x_n)) > (7/8m_n) \sum_{i=0}^{m_n-1} (f_n^i(z) - f_n^i(y)) = 7/(8q_n).$$

LEMMA.
$$(1/s) \sum_{i=0}^{s-1} (f_n^i(x_n) - ip_n/q_n) \rightarrow (1/q_n) \sum_{i=0}^{q_n-1} (f_n^i(z) - ip_n/q_n) \text{ as } s \rightarrow \infty.$$

Proof. Clearly, it suffices to show:

$$(1/rq_n) \sum_{i=0}^{rq_n-1} (f_n^i(x_n) - ip_n/q_n) \to (1/q_n) \sum_{i=0}^{q_n-1} (f_n^i(z) - ip_n/q_n) \quad \text{as } r \to \infty.$$

But

$$(1/rq_n)\sum_{i=0}^{rq_n-1}\left(f_n^i(x_n)-ip_n/q_n\right)=(1/q_n)\sum_{i=0}^{q_n-1}\left\{(1/r)\sum_{s=0}^{r-1}\left(f_n^{i+sq_n}(x_n)-sp_n-ip_n/q_n\right)\right\}.$$

So it suffices to show that for each i, $0 \le i \le q_n - 1$:

$$(1/r)\sum_{s=0}^{r-1}(f_n^{i+sq_n}(x_n)-sp_n-i(p_n/q_n))\to f_n^i(z)-ip_n/q_n\qquad\text{as }r\to\infty.$$

For this it suffices to show:

$$f_n^{i+sq_n}(x_n) - sp_n - ip_n/q_n \rightarrow f_n^i(z) - ip_n/q_n$$
 as $s \rightarrow \infty$.

But this follows from there being no elements of the cycle of f_n between x_n and z ([1] §1). Q.E.D.

Now choose $t_n > q_n^6$ such that:

$$\left| (1/t) \sum_{i=0}^{t-1} \left(f_n^i(x_n) - i p_n/q_n \right) - (1/q_n) \sum_{i=0}^{q_n-1} \left(f_n^i(z) - i p_n/q_n \right) \right| < 1/(8q_n)$$

for all $t \ge t_n$. Then if $t \ge t_n$:

$$(3.8) (1/t) \sum_{i=0}^{t-1} (f_n^i(x_n) - ip_n/q_n) > (1/q_n) \sum_{i=0}^{q_n-1} (f_n^i(z) - ip_n/q_n) - 1/(8q_n)$$

$$= (1/m_n) \sum_{i=0}^{m_n-1} (f_n^i(z) - ip_n/q_n) - 1/(8q_n)$$

$$> (1/m_n) \sum_{i=0}^{m_n-1} (f_n^i(x_n) - ip_n/q_n) + 3/(4q_n)$$

by (3.7), where m_n is any multiple of q_n with $q_n \le m_n \le q_n^2$.

Choice of p_{n+1} , q_{n+1} . Choose $1/2^n > \delta_n > 0$ such that if $0 < \lambda < \delta_n$, $f_{n+1}(z) = f_n(z) + \lambda$ (|im z| < 1), and f_{n+1} is semistable forward with rotation number p_{n+1}/q_{n+1} , then f_{n+1} , p_{n+1} , q_{n+1} satisfy conditions 3.4, 3.5. Choose $a, b \in \mathbb{Z}$ such that $aq_n - bp_n = 1$.

Take $q_{n+1} = b + uq_n$, $p_{n+1} = a + up_n$, for u large enough to ensure $q_{n+1} \ge t_n$, and such that $\rho(f_n + \delta_n) > p_{n+1}/q_{n+1}$. Then p_{n+1} , q_{n+1} satisfy 3.2 and 3.4.

Choice of f_{n+1} . Suppose $\rho(f_n + \lambda_n) = p_{n+1}/q_{n+1}$, where $f_n + \lambda_n$ is semistable forward. Such a λ_n exists and is unique ([1] §1).

Choose $f_{n+1}(z) = f_n(z) + \lambda_n + \varepsilon_n(z)$ such that $\rho(f_{n+1}) = p_{n+1}/q_{n+1}$, $\varepsilon_n(x) \ge 0$ for all $x \in \mathbb{R}$, f_{n+1} has a unique cycle, and ε_n is small enough to ensure 3.1-3.5 are satisfied ([1] §1).

Verification that 3.6 is satisfied.

$$(1/m_{n+1})\sum_{i=0}^{m_{n+1}-1} (f_{n+1}^i(x_n) - ip_{n+1}/q_{n+1}) \ge (1/q_{n+1})\sum_{i=0}^{q_{n+1}-1} (f_{n+1}^i(x_n) - ip_{n+1}/q_{n+1})$$

(since f_{n+1} is semistable forward)

$$\geq (1/q_{n+1}) \sum_{i=0}^{q_{n+1}-1} (f_n^i(x_n) - ip_n/q_n) - (1/q_{n+1}) \sum_{i=0}^{q_{n+1}-1} (ip_{n+1}/q_{n+1} - ip_n/q_n)$$

$$> (1/m_n) \sum_{i=0}^{m_n-1} (f_n^i(x_n) - ip_n/q_n) + 3/(4q_n) - 1/(2q_n),$$

by 3.8, 3.2 and because $q_{n+1} \ge t_n$, where m_n and m_{n+1} are multiples of q_n , q_{n+1} respectively.

The construction is completed.

REFERENCES

- 1. V. Arnold, Small denominators I. Mappings of the circumference onto itself, Izv. Akad. Nauk SSSR Ser. Mat. 25 (1961), 21 86; Amer. Math. Soc. Transl. Ser. 2, 46 (1965), 213-284.
- 2. H. Furstenburg, Strict ergodicity and transformations of the torus, Amer. J. Math. 83 (1961), 573-601.
- 3. M. Herman, Sur la conjugaison différentiable des difféomorphisms du cercle à des rotations, Thesis, l'Université Paris Sud, Centre d'Orsay, 1975.
- 4. M. Rees, On the structure of minimal distal transformation groups with topological manifolds as phase spaces, to appear.

MATHEMATICS INSTITUTE
UNIVERSITY OF WARWICK
COVENTRY, ENGLAND